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A DNS study of laminar bubbly flows in a vertical channel
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Abstract

Direct numerical simulations are used to examine laminar bubbly flows in vertical channels. For equal size nearly spher-
ical bubbles the results show that at steady state the number density of bubbles in the center of the channel is always such
that the fluid mixture there is in hydrostatic equilibrium. For upflow, excess bubbles are pushed to the walls, forming a
bubble rich wall-layer, one bubble diameter thick. For downflow, bubbles are drawn into the channel center, leading to
a wall-layer devoid of bubbles, of a thickness determined by how much the void fraction in the center of the channel must
be increased to reach hydrostatic equilibrium. The void fraction profile can be predicted analytically using a very simple
model and the model also gives the velocity profile for the downflow case. For the upflow, however, the velocity increase
across the wall-layer must be obtained from the simulations. The slip velocity of the bubbles in the channel core and the
velocity fluctuations are predicted reasonably well by results for homogeneous flows.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Bubbly flows in vertical pipes and channels are encountered in a wide variety of industrial systems. The
best-known early study of such flows is by Serizawa et al. (1975) who examined the void fraction distribution
and the velocity profile in turbulent air–water bubbly flows. Other investigations include experiments by Wang
et al. (1987), Liu and Bankoff (1993), Nakoryakov et al. (1981, 1996), Liu (1997), Kashinsky and Randin
(1999), So et al. (2002), Guet et al. (2004), and Matos et al. (2004). Although there are some differences
between the results obtained by the different investigators, possibly due to different bubble sizes, all show that
for nearly spherical bubbles the void fraction distribution and the velocity profile in the core of the channel are
relatively uniform and that a void fraction peak is generally found near the wall for upflow but not for down-
flow. Sufficiently deformable bubbles, on the other hand, show exactly the opposite behavior and migrate to
the center of the channel in upflow and toward the walls in downflow. A number of authors have also devel-
oped two-fluid models of bubbly flows in vertical channels. General descriptions of the two-fluid model can be
0301-9322/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijmultiphaseflow.2006.02.003

* Corresponding author. Tel.: +1 508 831 5759; fax: +1 508 831 5680.
E-mail address: gretar@wpi.edu (G. Tryggvason).

mailto:gretar@wpi.edu


644 J. Lu et al. / International Journal of Multiphase Flow 32 (2006) 643–660
found in Delhay (1982), Kataoka and Serizawa (1989), Zhang and Prosperetti (1994) and Drew and Passman
(1999), for example. For a recent discussion of the development of averaging theories for even more complex
situations, see Sirignano (2005). One of the earliest models for a turbulent flow in a vertical channel was devel-
oped by Drew and Lahey (1982) who solved the resulting equations using asymptotic analysis. The model
reproduced the general trends seen experimentally, including uniform velocity and void fraction in the core,
wall peaking for upflow and a wall-layer without bubbles for downflow. Subsequent investigators have solved
the resulting equations numerically, see, e.g., Lopez-De-Bertodano et al. (1987, 1994), Kuo et al. (1997), and
Guet et al. (2005). The model results generally reproduce the experimental results reasonably well. Extensions
of the two-fluid model to handle non-uniform bubble size distributions can be found in Politano et al. (2003)
and Celik and Gel (2002).

While the flow is likely to be turbulent in most cases of practical interest, laminar flow is an important lim-
iting case that can be used to explore aspects of multiphase flow modeling that do not depend on the specifics
of the turbulence. This was recognized by Antal et al. (1991) who developed a two-fluid model for such flows
and compared the model predictions with experimental results. The agreement between the model and the
experiments was good, although for upflow there is a need to introduce a wall repulsion force to keep the cen-
ter of the bubbles at least a radius away from the walls and the authors observed some dependency on the
exact value of the lift coefficient used. Other studies of laminar flow include the experimental investigation
by Song et al. (2001) who studied flows with both uniform and non-uniform distribution of bubble sizes
and Luo et al. (2003) who examined the motion of light particles. Both studies were done for upflow and wall
peaking was found in both cases.

The model of Antal et al. (1991) was studied analytically by Azpitarte and Buscaglia (2003) who made the
very important observation that the fluid in the center region of the channel is always in hydrostatic equilib-
rium. Biswas, Esmaeeli and Tryggvason (2005) conducted direct numerical simulations of two-dimensional
bubbly flows and compared their results with the model Antal et al. Since the simulations assumed two-dimen-
sional flow, Biswas et al. had to adjust the model parameters, but they found that once the parameters had
been adjusted for one case, the model predicted other situations reasonably well.

In this paper we report a numerical study of bubbly flow at relatively modest Reynolds numbers where the
channel flow is laminar in the absence of bubbles. The buoyancy driven motion of spherical bubbles in a ver-
tical channel flow has a particularly simple structure, making it the natural place to start examining multiphase
flow in confined geometries. The averaged motion of the liquid can, in particular, be described analytically for
downflow and ‘‘nearly’’ analytically for upflow. We start by giving a summary of the analytical description, in
Section 2.

2. Problem set-up

We consider the flow sketched in Fig. 1. The channel is vertical, of width W, and gravity points downward
so the bubbles rise relative to the liquid. The imposed pressure gradient is selected to generate upflow in the left
frame and downflow for the frame on the right. Here, and in what follows, we use a coordinate system where
the cross-stream (or wall-normal) coordinate is x, the streamwise coordinate is y, and z is perpendicular to the
flow and parallel to the walls.

The lift force on a clean spherical bubble rising in a vertical shear flow is directed toward the side where the
fluid moves faster past the bubble, in a frame of reference moving with the bubble. In channels, where the fluid
velocity is zero at the walls, the bubbles will therefore move laterally toward the walls for upflow and away from
the walls in downflow. The average mixture density depends on the number density of bubbles, so the lateral
motion increases the density of the mixture losing bubbles and decreases it where the bubbles are accumulating.
For upflow the imposed pressure gradient that drives the flow has to be larger than the weight of the mixture and
the excess pressure gradient is balanced by the shear force in the mixture. As bubbles are driven to the walls, from
the middle of the channel, eventually the mixture density increases to a point where the weight of the mixture is
balanced by the pressure gradient. The shear therefore becomes zero and the lateral migration of the bubbles
stops. Similarly, for downflow the pressure gradient forces the flow downward but as the bubbles are driven away
from the walls the mixture density in the middle of the channel decreases until the mixture is buoyant enough to
match the pressure gradient and the shear in the middle becomes zero. Thus, for both upflow and downflow



Fig. 1. A sketch of the structure of buoyancy driven bubbly flow in a vertical channel. In both cases the bubbles rise upward, but the
direction of the fluid flow is different. In the frame on the left the flow is upward and in the frame on the right it is downward.
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lateral migration of the bubbles changes the mixture density in the middle of the channel until the shear is zero
and further lateral migration of the bubbles is stopped. For upflow the result is a bubble rich layer near the walls
but for downflow the wall-layer is depleted of bubbles. The steady state void fraction and velocity profiles are
shown schematically in Fig. 1. The profiles in both cases are obviously stable. If too many bubbles move to
the wall in the upflow case, the mixture in the middle becomes sufficiently dense to overcome the pressure gradient
and starts to fall down. This generates a shear that drives the bubbles out of the wall-layer, reducing the density in
the middle again. In the same way, if too many bubbles accumulate in the middle of the channel, the mixture
starts to rise by buoyancy, thus creating a shear that drives the bubbles back toward the wall. Similar consider-
ations show that the downflow is also stable.

The simple structure of the flow allows us to derive a relatively straightforward mathematical description.
Indeed, for the downflow case we can write down a complete solution without any adjustable parameters. For
the upflow, however, we need to know the relation between the wall shear and the flow rate in the presence of
bubbles.

A force balance on an elementary control volume in the channel at steady state gives
d

dx
sðxÞ � dp

dy
� qðxÞg ¼ 0; ð1Þ
where s(x) is the shear stress, the second term is the imposed pressure gradient and the last term is the weight
of the mixture. The direction of the flow is given by the sum of the pressure gradient and weight of the mixture,
or by the sign of b = dp/dy + qavg. For b < 0 the pressure gradient overcomes the weight of the mixture and
the flow is upward, but b > 0 results in downflow. The local density depends on the void fraction,
q = eqG + (1 � e)qL, and the average density, qav, and the average void fraction, eav, are related by qav =
eav = qG + (1 � eav)qL. The subscripts G and L refer to the gas and the liquid, respectively. We can therefore
rewrite (1) as
d

dx
sðxÞ � b� gDqðeav � eðxÞÞ ¼ 0; ð2Þ
where Dq = qL � qG. If there is no shear in the center of the channel, the void fraction in the center, ec, must be
given by
ec ¼ eav þ
b

gDq
. ð3Þ
For upflow (b < 0) the void fraction in the center will therefore be less than eav, but for downflow (b > 0), the
void fraction in the center will be larger than eav. For upflow, the void fraction in the center becomes zero if the
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pressure gradient is sufficiently large so that all the bubbles are driven to the wall and the discussion below is
therefore limited to upflow cases where eav + b/gDq > 0. For downflow the only limitation is that the void
fraction in the center obviously cannot be larger than unity (very high void fraction approaching unity would
likely result in bubble coalescence and violate the assumptions of small, nearly spherical bubbles).

For downflow the increase in void fraction in the center leads to a bubble free zone near the walls. The
thickness of this zone is found by mass conservation: eavW = ec(W � 2d). Using Eq. (3) and solving for the
thickness of the wall-layer gives
d ¼ bW
2ðbþ eavgDqÞ . ð4Þ
Since there are no bubbles near the wall, the shear is given by s = lL(dv/dx) and the velocity can be found by
integrating
lL

d2v
dx2
¼ bþ Dqgeav ð5Þ
with the boundary conditions u = 0 at x = 0 and dv/dx = 0 at x = d. The velocity in the wall-layer is therefore
vðxÞ ¼ ðbþ eavgDqÞ
2lL

ðx2 � 2dxÞ. ð6Þ
The velocity in the middle is uniform and can be found by taking x = d in Eq. (6):
vc ¼
�b2W 2

8lLðbþ eavgDqÞ . ð7Þ
The volume flux in the wall layer is Qd ¼
R d

0
vðxÞdx ¼ �ðbþ eavgDqÞd3=3lL (since there are no bubbles in the

wall layer) and the total liquid volume flux is
Q ¼
Z W

0

ð1� eÞvLðxÞdx ¼ 2Qd þ vcðw� 2dÞð1� ecÞ ¼ �
ðbW Þ3

8lLðbþ eavgDqÞ2
2

3
� eav þ

Dqg
b
ð1� eavÞ

� �
. ð8Þ
For upflow, experimental results for nearly spherical bubbles generally show that the thickness of the wall
peak is about a bubble diameter (e.g., Serizawa et al., 1975; Luo et al., 2003; Guet et al., 2005). Assuming the
layer to be exactly equal to db, we can use mass conservation, eavW = ec(W � 2db) + ew2db, and Eq. (3) to
show that the average void fraction in the wall-layer is
ew ¼ ec �
W

2db

b
gDq

¼ eav �
b

gDq
W

2db

� 1

� �
. ð9Þ
Since b < 0, the wall-layer void fraction is higher than the average void fraction. The velocity in the wall-
layer is more complex than for the downflow case because of the presence of the bubbles. We will not attempt
to establish the relationship here, but instead defer a detailed discussion to a later paper.

For both the upflow and the downflow, the wall shear must balance the net pressure gradient at steady
state:
2sw ¼ �bW . ð10Þ

This relationship, together with a constant flow rate, will be used below to check whether the flow is at

steady state.
Notice that the motion of the bubbles plays essentially no part in the discussions above, except in determin-

ing the density of the mixture. The relative velocity of the bubbles, their dispersion and the unsteady liquid
motion depends, of course, on the void fraction, but these quantities are essentially decoupled from the aver-
age motion of the liquid.

The flow in the channel is characterized by a Reynolds number that can, however, be defined in several
ways. Here we use a Reynolds number based on a hypothetical parabolic velocity profile driven by the total
pressure gradient b. Thus, we define a reference velocity Uref = bW2/12lL. The half-width of the channel is
used as a reference length, Lref = W/2. The bubble motion is determined by the ratio of buoyancy and viscos-



Table 1
The parameters used in the simulations

Case Downflow Upflow Upflow 2

Domain size 1.6 · 2 · 0.5 1.5 · 2 · 0.5 2 · 2 · 0.5
Resolution 210 · 256 · 64 210 · 256 · 64 210 · 256 · 64
Density ratio (qG/qL) 0.1 0.1 0.1
Viscosity ratio (lG/lL) 0.1 0.1 0.1
Pressure gradient (b/gDq) �0.032 0.04672 0.03115
Diameter of bubbles 0.2 0.2 0.16
Number of bubbles 40 44 60
Average void fraction in the whole channel 0.10472 0.12287 0.06434
Void fraction in hydrostatic equilibrium 0.13672 0.07615 0.03318
Eotvos number 0.5 0.5 0.5
Archimedes number 2000 2000 316.2
Reynolds number 2400 3504 721.2
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ity, given by the Archimedes number, N, and although we will consider only nearly spherical bubbles, the
shear near the walls is generally high and bubble deformability, governed by the Eötvös number, E0, may play
some role. In addition, we need to specify the average void fraction eav, and the relative importance of the
pressure gradient and buoyancy, b/gDq. The governing non-dimensional numbers are therefore:
Rech ¼
qLbW 3

24l2
L

; N ¼ q2
Ld3

eg
l2

L

; Eo ¼ gqLd2
e

r
;

b
Dqg

; eav
In what follows, we shall limit our considerations to systems with bubbles of only one size. These non-
dimensional numbers for each simulation discussed are listed in Table 1. Time is non-dimensionalized by
sref = Lref/Uref, flow rate is normalized by Uref2Lref and Reynolds stresses are normalized by bW/2.

3. Numerical method

The numerical method used for the simulations described in the next section is the finite volume/front
tracking method introduced by Unverdi and Tryggvason (1992). The method has been described in detail
by Tryggvason et al. (2001) and various validation studies can be found in Esmaeeli and Tryggvason
(1999) and Bunner and Tryggvason (2002), for example. The Navier–Stokes equations are solved for the
whole flow field, including both the liquid and the gas using a regular structured grid and the bubbles surface
is tracked by an unstructured surface grid. The surface grid is used to determine the density and viscosity fields
at each time step and to compute the surface tension. The method, with various improvements, has been used
to study many aspects of bubbly flows, including the free buoyant rise of many bubbles (Esmaeeli and Try-
ggvason, 1998, 1999, 2005; Bunner and Tryggvason, 2002, 2003) Here, we use an implementation where
the advection terms are computed using the non-conservative form and a QUICK scheme (Lu et al., 2005).

4. Results

The discussion in Section 2, along with Fig. 1, shows that there is a fundamental difference between the void
fraction distribution in a channel with upflow and one where the liquid is flowing downward. We therefore
start by examining two simulations, one for downflow and the other for upflow, where the set-up is similar
(although not identical), except for the flow direction. The various parameters describing the simulations
are listed in Table 1 where we give the values of the physical quantities in computational units, as well as
the non-dimensional numbers governing the run. In addition, we give the parameters for a third case with rel-
atively low Reynolds number bubbles in upflow. That case will be discussed at the end of this section. The
computational domain is periodic in the direction perpendicular to the walls and in the flow direction. To keep
the cost of the computations as low as possible, we use a domain whose thickness is small (2.5 · db) compared
to its width (W = 10 · db), and that is relatively short (0.75 · W for the upflow and 0.8 · W for the downflow).
The resolution used is shown in Table 1. We have also taken the bubble density to be one-tenth of the liquid
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density, again to reduce the computational cost. As discussed in Bunner and Tryggvason (2002), we expect this
approximation to have a relatively minor influence on the results. The bubble diameter is 0.2. For the upflow
we use 44 bubbles, giving an average void fraction of eav = 0.12287 and for the downflow we use 40 bubbles,
resulting in eav = 0.1047. For the upflow �b/gDq = 0.032, which is much smaller than the average void frac-
tion, so there is no danger that the core region will be depleted of bubbles. For the upflow the void fraction in
the center of the channel, as predicted by Eq. (3) should be ec = 0.07615, corresponding to slightly less than 22
bubbles in the center. For the downflow the model predicts that the core void fraction should be ec = 0.13672,
the thickness of the bubble free wall-layer should be d = 0.2341 (Eq. (4)), and the downward liquid velocity in
the center should be Uc = �0.3511, giving a net liquid volumetric downflow of Q = �0.2869.

For the present study we are only interested in the steady state behavior and since the transient is fairly
long, we have started the simulations using a bubble distribution and an initial liquid velocity that is close
to the steady state. For the downflow, where the analytical model gives both a bubble distribution and a veloc-
ity profile, this is relatively straight forward, but for the upflow we adjusted the velocity profile a few times by
multiplying it by a constant selected to drive it toward a state where Eq. (10) was satisfied. The results pre-
sented below were obtained after the systems had reached an approximate steady state.

The bubble distribution at one time, after the flow has reached an approximately statistically steady state is
shown in Fig. 2, for upflow on the left and downflow on the right. Isocontours of the vertical velocity in a
plane through the middle of the domain are also shown. It is clear that the bubble distribution is very different.
For the upflow, about half the bubbles are hugging the walls and most of the bubbles left in the middle of the
channel form horizontal clusters. While the bubbles in the center of the channel are clearly spherical, the bub-
bles near the wall are deformed slightly. For the downflow, there is a bubble free zone near the walls and the
distribution of bubbles in the center of the channel is relatively uniform, although it is possible to identify
some tendency to form horizontal clusters. The velocity in both cases changes rapidly near the walls, but is
relatively uniform in the center. Since the bubbles are rising relative to the liquid, the velocity contours show
the wakes of some of the bubbles. Although we show the bubble distribution only at a single instance for each
case, we have examined it at several other times and generally find that it is similar to what is shown here, with
the exception that the horizontal rafts seen for the upflow are often less prominent. Horizontal clustering of
buoyant bubbles, as seen here, was initially predicted by Sangani and Didwania (1993) and Smereka (1993),
who assumed potential flow. At finite Reynolds numbers the clustering is generally transient and the clusters
are smaller than the potential flow results suggested. For details see the recent experiments of Figueroa-Espi-
noza and Zenit (2005) and the computations of Esmaeeli and Tryggvason (2005).

In Fig. 3 we plot the horizontal (or cross-channel) coordinate of the bubble centers versus time for both the
upflow (left) and the downflow (right) after the flow has reached an approximately steady state. For both cases
it is clear that the bubbles interact strongly, although the void fraction in the center is higher in the downflow.
In the upflow several bubbles slide along the walls. Their centers are about one bubble radius from the wall
and their trajectories are essentially straight. A few bubbles move in and out of the wall-layer, but only rarely.
Fig. 2. The bubble distribution and isocontours of the vertical velocity in the middle plane for upflow on the left and dowflow on the right.



Fig. 3. The path of bubbles. The cross-channel coordinate versus time for the upflow (left) and the downflow (right) after the flow has
reached an approximate steady state.
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For the downflow, the regions near the walls remain completely free of bubbles and in no case does a bubble
center come closer to the wall than about three bubble radii. While bubbles in the downflow seem to be
repelled gently if they move close to the bubble free wall-regions, upflow bubbles that belong to the outer edge
of the core region seem to bump away more abruptly when they collide with bubbles in the wall-layer.

To assess how well the motion has converged to a steady state, we plot the wall shear stress, averaged over
both walls, versus time in Fig. 4(a). The wall shear must be balanced exactly by b—the pressure gradient and
the weight of the mixture—at steady state, and the theoretical value (Eq. (10)) is shown by a horizontal dashed
line. In both cases does the shear stress match the predicted value. While the downflow wall shear is essentially
constant, the shear stress for the upflow exhibits both short and long scale fluctuations as the bubbles interact
and bubbles move in and out of the wall-layer. We note, in particular, that while the shear is slightly above the
steady state value initially, the expulsion of two bubbles from the wall-layer at just before time 190 (see
Fig. 3(left)) coincides with the slight reduction in the wall shear seen in Fig. 4(a) at the same time. The mixture
flow rate versus time, for both the up and the downflow is plotted in Fig. 4(b). The flow rate is found by inte-
grating the vertical velocity over the whole computational domain and dividing by the cross sectional area of
the domain. While the downflow rate is essentially constant, the upflow flow rate varies slightly and, in par-
ticular, the slight downward trend when the wall shear is too high during the early part of the simulation is
abruptly reversed when two bubbles are pushed out of the wall-layer. We note that we have run the upflow
case for a longer time and found that the slow variations shown here seem to be typical. For convenience
we have used the total flow rate here to monitor the convergence. The model in Section 2, however, predicts
the liquid flow rate for the downflow, given by Eq. (8). The predicted and the computed liquid flow rate will be
compared below, after we present the average relative rise velocity of the bubbles.



Fig. 4. (a) The averaged wall shear stress versus time for the upflow (top) and the downflow (bottom). The dashed lines represent the
corresponding ideal wall shear stress needed to balance the pressure gradient. (b) The total flowrate (liquid and air) versus time for the
upflow (top) and the downflow (bottom).
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At steady state, the void fraction distribution is predicted by the analysis presented in Section 2, for both
the upflow and the downflow. Fig. 5 shows the average void fraction profile across the channel from the sim-
ulations, computed by averaging first over planes parallel to the walls and then over several times. Since the
domain is relatively small and simulated time is short, we have also averaged the left and the right hand side,
forcing the profile to be symmetric. The theoretical predictions are shown by the dashed lines. While the com-
puted profiles exhibit some fluctuations due to the relatively small number of bubbles, and the transition from
zero void fraction near the walls for the downflow to the constant void fraction in the center is not as sharp as
predicted by the model, the agreement is very good. For upflow the shape of the void fraction profile in the
wall-layer is determined by the shape of the bubbles, but the averages are in good agreement. The average void



Fig. 5. The average void fraction profile across the channel for the upflow (top) and the downflow (bottom). The solid lines denote the
results from the simulations and the dashed lines are the analytical results.
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fraction in the wall-layer, predicted to be ew = 0.3098, is about half of the void fraction due to a layer of closely
packed spheres on the wall (given by p=

ffiffiffiffiffi
27
p

� 0.605).
In Fig. 6 we plot the liquid velocity (the velocity multiplied by an indicator function set to unity in the liquid

and zero in the bubble), averaged over planes parallel to the walls, versus the cross-stream coordinate, at one
time for the downflow and two times for the upflow. We also show the velocities of all the bubbles in the
domain as open circles. For the downflow the liquid velocity is relatively symmetric and uniform in the middle
and the bubble velocities are similar. For the upflow the liquid velocity profile is more asymmetric and there is
a significant difference between the two times shown. The bubble velocities also exhibit significantly larger fluc-
tuations than for the downflow case.

The average vertical liquid velocity, averaged over time in the same way as the void fraction in Fig. 5, is
shown in Fig. 7. For the downflow the model gives the complete velocity profile. The theoretical value is
shown by a dashed line and it is clear that the overall agreement is good. For the upflow the model only pre-
dicts that the velocity in the center is constant and this is reproduced by the simulation. In Fig. 7 we have also
plotted the average bubble velocity, found by dividing the width of the channel into ten equal bins and aver-
aging the bubble velocity in each bin. For the upflow the first and the last bin contain the bubbles in the wall-
layer, but for the downflow those bins are empty. The average slip velocity of all the bubbles in the downflow
is essentially constant and equal to 0.05313. Similarly, the slip velocity in the core of the upflow channel is
equal to 0.05085. The bubbles hugging the wall, on the other hand, are slowed down significantly and the slip
velocity has also been reduced significantly. Since the flow in the middle is essentially homogeneous it is nat-
ural to compare the bubble slip velocity to the rise velocity of bubbles in fully periodic domains. Although
flows of equal size bubbles in fully periodic domains have been studied extensively by direct numerical simu-
lations (Esmaeeli and Tryggvason, 1998, 1999, 2005; Bunner and Tryggvason, 2002a,b), such simulations have
not been done for exactly the parameters used here. We therefore conducted two simulations of homogeneous



Fig. 6. The average velocity versus the cross channel coordinate at one time for the downflow (bottom) and at two times for the upflow
(top and middle). The solid lines denote the fluid velocities, and the circles represent the velocities and the cross-channel coordinates of all
the bubbles in the channel.

652 J. Lu et al. / International Journal of Multiphase Flow 32 (2006) 643–660
bubbly flows, but using relatively few bubbles in a small computational domain. As shown by Bunner and
Tryggvason (2002) the domain size has a relatively minor influence on the average rise velocity of the bubbles
and the statistics that depends primarily on two bubble interactions, such as the velocity fluctuations in the
liquid. Using 18 bubbles of diameter 0.2 in a domain of size 0.963, giving a void fraction of 0.1364 (equal
to the theoretical void fraction in the center of the downflow channel) we found an average slip velocity of
0.0521 (non-dimensionalized in the same way as the channel flow), in good agreement with what we found
for the channel. For 18 bubbles in a 1.14 by 1.14 by 0.76 domain and a void fraction of 0.0763, we found
an average slip velocity of 0.04314, agreeing reasonably well with what we found for the middle of the upflow
channel. The rise velocity of the bubbles in the middle also compares relatively well with experimental corre-
lations for bubbles under similar conditions. Using the formula suggested by Rodrigue (2001) for the terminal



Fig. 7. The average vertical liquid velocity profile across the channel for the upflow (top) and the downflow (bottom). The solid lines are
the simulated results, averaged over the time shown in Fig. 3. The dashed line is the analytical results for the downflow. The circles
represent the average bubble velocities in 10 equal sized bins across the channel.
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velocity of a single bubble in an unbounded fluid and the correlation of Ishii and Zuber (1979) to correct for
the effect of a finite void fraction we find that the numerical results for the slip velocity of the bubbles in the
periodic domains are about 2.2% higher for the higher void fraction and about 3.2% lower for the lower void
fraction. For a more detailed discussion of how the rise velocity of bubbles in full simulations compares with
experimental correlations, see Bunner and Tryggvason (2002).

Integrating the average liquid velocity in Fig. 7 for the downflow yields Q = �0.2755, as compared with
�0.2869 predicted by the model. It is also clear that the computed liquid velocity in the core is about 5% lower
than the model prediction. This is most likely due to liquid moving upward with the bubbles. For spherical
bubbles in potential flow the drift mass is equal to the added mass (half the mass displaced by the bubble)
and by assuming that a volume equal to half the bubble volume is moving by the bubble velocity instead
of the predicted liquid velocity, we find that the average downward velocity is reduced by roughly a third
of the observed difference. However, using the drift mass for a single isolated bubble in potential flow is obvi-
ously an approximation and the finite rise Reynolds number of the bubbles used here (and thus larger wake) is
likely to result in a larger drift mass.

We note that the small size of the domain makes the average results relatively sensitive to the details of the
flow, particularly for the upflow. If one or two bubbles leave the wall-layer, for example, the flow in the middle
of the channel is not completely in hydrostatic equilibrium and we then see a slightly parabolic velocity profile.
The averaging period selected here includes times when the number of bubbles in the middle is larger than
needed for hydrostatic equilibrium and a careful examination of the velocity profile shows a slight curvature.

The model in Section 2 applies equally well to two-dimensional flows and we have compared the simulation
results for downflow presented in Biswas et al. (2005) with the model in Section 2 and found excellent agree-
ment in all cases, both for the averaged velocity and the void fraction profile. As pointed out in Biswas et al.



654 J. Lu et al. / International Journal of Multiphase Flow 32 (2006) 643–660
(2005), the downflow case is insensitive to the exact value of the modeling parameters, as we also conclude
from the results presented here.

The bubble distribution and the velocity in the middle of the channel are essentially constant and the slip
velocity of the bubbles agrees well with what is found for fully periodic domains. To see if the similarity
extends to the unsteady motion of the liquid, we plot the root mean square (rms) velocity fluctuations for both
cases in Fig. 8. The averaging is the same as for Figs. 5 and 7. The horizontal lines show the rms velocities
from the homogeneous bubby flow simulations. For the downflow the velocity fluctuations are nearly constant
in the middle of the channel and relatively well predicted by the results from homogeneous flows, although the
channel cross-stream fluctuations, v 0, are consistently slightly higher. For the upflow the trend is well predicted
by the homogeneous flow results, but the quantitative agreement is not as good, particularly for v 0. We believe
that this is mainly due to the relatively small size of the domain and the persistence of large unsteady asym-
metries in the flow and possibly the narrowness of the computational domain.

Another check on the homogeneity of the flow in the middle of the channel comes from looking at the aver-
age of the off-diagonal components of the Reynolds stress tensor. In Fig. 9 we plot hu 0v 0i as a function of the
cross-channel coordinate, averaged in the same way as for the velocity plots. We have also averaged over the
left and the right hand side of the channel, but taking into account that the fluctuations are antisymmetric
around the centerline. By symmetry, hu 0v 0i should be exactly zero in homogeneous flows and it is clear in
Fig. 9 that for downflow this is true. Near the walls the flow is bubble free and essentially steady so hu 0v 0i
is also zero there. For the upflow hu 0v 0i is nearly zero in the center of the channel but we see large fluctuations
in a region near the walls that extend about a bubble diameter beyond the wall-layer. We note that while the
instantaneous hu 0v 0i profile for the downflow is consistently nearly zero, the profile for the upflow fluctuates
Fig. 8. The root mean square (rms) velocity fluctuations for the upflow (top) and the downflow (bottom). The solid lines are the vertical
velocity fluctuations, and the dashed lines are the fluctuations in the cross-channel direction. The dotted and dash–dotted straight lines
represent the corresponding velocity fluctuations from homogeneous flow simulations having the same void fraction as predicted
theoretically for the center of the channel.



Fig. 9. The average Reynolds stress profile versus the cross-channel coordinate for the upflow (top) and the downflow (bottom). The solid
lines are the results of averaging over the time shown in Fig. 3. The dashed lines denote the results form the corresponding homogeneous
flow.

Fig. 10. The bubble distribution at one time for the low Reynolds number upflow case.
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much more. Furthermore, since the flow is subject to large asymmetries we would expect to have to take an
average over a very long time to get a fully converged profile.

In addition to the two simulations described above, we have conducted one additional study of bubbles in
upflow at much lower channel and bubble Reynolds numbers. The various parameters governing the run,
along with the relevant non-dimensional numbers are listed in Table 1. We have also carried out a simulation
in a fully periodic domain for the void fraction predicted in the middle of the channel. In Fig. 10 the bubble
distribution at one late time is shown and the path of the bubbles is shown in Fig. 11. The wall shear and the
flow rate are plotted in Fig. 12 along with the theoretical wall-shear, and the average void fraction, velocity
profile, velocity fluctuations, and the hu 0v 0i component of the Reynolds stresses are presented in Fig. 13. The
average quantities in Fig. 13 are computed in the same way as described earlier, after the flow has reached an
approximately steady state, and we include the model predictions for the void fraction in Fig. 13(a) and the
results for the homogeneous flow in Fig. 13(c). While the bubble Reynolds number is lower here than for the
case considered earlier, the number of bubbles is larger and we have carried the simulation out for a consid-
erably longer time. As a result, all averages are much better converged. The flow rate still shows some long
time fluctuations (Fig. 12) but the wall shear is essentially equal to the predicted value. The simulation involves
several exchanges of bubbles between the wall-layer and the core (Fig. 11), but the velocity profile is essentially
Fig. 11. The cross-channel coordinate of the bubble centers versus time for the low Reynolds number upflow case.
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flat (Fig. 13(a)) and the homogeneous region in the middle of the channel is better defined (Fig. 13(d))
although it is clear that the region where hu 0v 0i is non-zero extends beyond the wall-layer. It is also clear that
Fig. 12. The wall shear stress (top) and the total flow rate (bottom) versus time for the low Reynolds number upflow.

Fig. 13. Average profiles versus the cross-channel coordinate for the low Reynolds number flow. (a) Void fraction, (b) vertical fluid
velocity, (c) root mean square velocity fluctuations and (d) shear stress.
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while the fluctuation of the streamwise velocity is the same as found in homogeneous flows, the fluctuations of
the cross-stream velocity component are slightly larger. We do not have an explanation for this difference as of
yet.

5. Conclusions

Direct numerical simulations have been used to examine the statistically steady-state flow of buoyant bub-
bles in vertical channels. The flow is well described by a simple analytical model and the simulations show that
the fundamental assumptions of the model are correct. The flow consists of two regions: A homogeneous
region in the middle of the channel—the core region—where the void fraction and the velocity are uniform
and a wall-layer that consists of bubbles hugging the wall for upflow but is free of bubbles for downflow.
In the core region the weight of the bubble/liquid mixture is balanced exactly by the imposed pressure gradi-
ent. The correct void fraction is achieved by pushing bubbles to the wall for upflow and drawing in bubbles
from the wall region for downflow. For downflow the thickness of the bubble free wall-layer is determined by
the number of bubbles that must be added to bring the core region into hydrostatic equilibrium and for upflow
the void fraction of the wall-layer is determined by how many bubbles have to be removed from the core to
achieve hydrostatic equilibrium. For downflow, the velocity in the wall-layer can be calculated analytically,
but for the upflow the presence of the bubbles makes the flow more complex. For both upflow and downflow
the flow rate is governed by the force acting on the wall layer and the core moves by the velocity determined by
the wall-layer.

The model says nothing about the motion of the bubbles, but the comparisons done here suggest that
results for homogeneous flows, such as those provided by Esmaeeli and Tryggvason (1998, 1999, 2005) and
Bunner and Tryggvason (2002a,b), describe the bubbly flow in the channel core reasonably well. For upflow,
the model does not specify the dependency of the velocity increase across the wall-layer on the governing
parameters. Bubbly wall-layers are commonly observed and So et al. (2002), for example, have looked at some
of their properties experimentally. Another study, by Kitagawa et al. (2004), focused on the motion of many
bubbles sliding along a (slightly tilted) wall, but the bulk fluid was not moving. Both authors find that the
bubbles moving on the wall interact and occasionally seem to form clusters. The small size of our systems
did not allow us to see any significant cluster formation.

While the number of cases examined here has been limited, the good agreement with the model predictions
suggests that similar results will be obtained for all situations where the bubbles are nearly spherical and of
equal size and the flow is laminar. The only exception is upflow where the void fraction is either very low
or the pressure gradient high, so all the bubbles end up at the wall. In this case the flow in the center is likely
to remain parabolic, but the bubbles in the wall-layer will impose an increase in velocity as seen here. In real
systems there are, of course, a few complications. The primary one is the non-uniform size distribution of the
bubbles. As long as the bubbles are all nearly spherical it is, however, unlikely that the basic picture seen here
will change, although the dynamics of the bubbles both in the core and in the wall-layer will be different. A
mixture of small spherical bubbles and large deformable ones is, however, likely to lead to a more complex
flow.

The results presented here should be helpful for further development of models for multiphase flows. The
two-fluid model of Antal et al. (1991) predicts the hydrostatic balance in the core, as was pointed out by Azpi-
tarte and Buscaglia (2003), but the location of the wall-peak is determined in the model by the relative mag-
nitude of the lift force and the wall-repulsion force. The total through flow is sensitive to the thickness of the
wall peak and small changes in the lift force can change the results significantly. Our results suggest, on the
other hand, that the steady state is independent of the lift force. The bubbles in the wall-layer hug the wall
and the wall-peak is always one bubble radius away from the wall. The presence of a lift force is, however,
important in both driving the bubbles to the wall in the first place, as well as keeping them there. While
the exact magnitude of the lift may not be important at steady state, its exact value is likely to be important
for transient flows. Downflow on the other hand—as observed by several investigators—is insensitive to essen-
tially any modeling parameters. It is, however, important to note that the situation considered here, laminar
flow of equal size bubbles, is a limiting case. In practical situations the bubbles are unlikely to be of the same
size, they may coalesce and break, they will be contaminated, and the flow is likely to be turbulent. However,
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and in the spirit of the study of Antal et al. (1991), we believe that well understood limiting cases must provide
the foundation for the modeling of more complex situations.
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